
NISTIR 5643
AlllDM blbTia

mr -

muCATiO^tS
f

"K.
i'l

'•**

.-M

Outline of a Multiple Dimensional
Reference Model Architecture and
a Knowledge Engineering Methodology
for Intelligent Systems Controi

Hui-Min Huang
Unmanned Systems Group

Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

QC

100

.056

NO. 5643

1995

NIST

NISTIR 5643

Outline of a Multiple Dimensional
Reference Model Architecture and
a Knowledge Engineering Methodology
for intelligent Systems Control

Hui-Min Huang
Unmanned Systems Group
Intelligent Systems Division

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

April 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Submitted to the IEEE Expert Magazine, February 1995.

OUTLINE OF A MULTIPLE DIMENSIONAL REFERENCE MODEL
ARCHITECTURE AND A KNOWLEDGE ENGINEERING
METHODOLOGY FOR INTELLIGENT SYSTEM CONTROL

Hui-Min Huang
Mechanical Engineer

National Institute of Standards and Technology
Gaithersburg, MD 20899

email: huang@cme.nist.gov

Abstract

We outline a multiple dimensional
reference model architecture and a

methodology for representing and
developing intelligent systems. The
reference model architecture features

multiple dimensions enabling modeling
the multiple aspects of complex systems.

The canonical form within ^s
framework facilitates open and scalable

system architecture. The well-defined

stmctures facilitate efficient knowledge
engineering processes. We describe a

submarine automation model performing
real-time control to illustrate the

application of this reference model
architecture.

1. Introduction

Large scale intelligent control systems

pose unique challenges in computer
software and hardware technologies for

researchers. These systems often

conduct critical missions. They
commonly require the capability of real-

time access to knowledge bases to meet
the millisecond level control cycle

requirements. Researchers have begun to

address some aspects of this complex
problem domain. Antsaklis [1] pointed

out that intelligent systems typically

involve hierarchical architectures and that

certain levels exist in the hierarchies to

handle predefined functions. Sweet et al.

[2] identified that large scale, real-time,

and distributed are among the key
software technologies for the Aerospace
Industries Association (AIA).

Strassmann [3] also pointed out that,

"The rapid deployment of information

systems in the future under unpredictable

and often hostile conditions calls for

easily repairable software that is

constructed from reliable standard

components." In the areas of computer-
aided software engineering environments
and architectures, Simmons [4] describes

a Task Control Architecture (TCA).
However, scalability might be a problem
for this architecture as it is not intended to

model multiple cooperating agents.

Object oriented paradigms [5, 6] are

becoming popular for handling the

representation problems of software

systems. As Coad [6] pointed out,

however, they are not suitable for all

problems. Schneider, et al. [7]

developed a flexible object oriented real-

time software implementation tool called

ControlShell^ However, this tool does
not intend to address the architecture

issue and it seems as if a reference model
architecture can complement the capability

of Controls hell.

Intelligent system control has been the

research focus of the Intelligent Systems
Division (ISD) of the National Institute of

Standards and Technology (NIST).

NIST ISD proposes that a comprehensive
approach toward this intelligent control

system problem should cover all of the

following critical issues:

* A scalable and open architecture.

* A rich and representative reference

model.
* A distributed and efficient structure for

^ References to company or product names are for

identification only and do not imply NIST
endorsement

necessary perspectives of a system. Rich
representations are important. Literature

has revealed that applying a simplistic

modeling paradigm has failed for large

systems [6].

domain
controller^ controller JA*

PL* ^

•see section 2.1.

organizing system knowledge.
* A rigorous knowledge engineering

process and modeling paradigm.
* A comprehensive computer-aided

rapid development and deployment
environment.
* Real-time control and operator

interaction capability.

The particular approach that the

NIST ISD has l^en using is

called the Real-time Control

System (RCS) reference model
architecture [8]. Researchers in

NIST ISD and elsewhere have
been applying RCS to various

large sc^e intelligent control

systems, including [9, 10, 11]

since two decades ago. TTie

ultimate goal for NIST ISD is for

RCS to evolve into a unified

solution paradigm to the problem
domain of intelligent system
control.

This paper attempts to outline

RCS as a multiple dimension
reference model architecture for

use with intelligent systems.

This paper also outlines an
application development Figure 1

:

methodology for RCS which
emphasizes knowledge
engineering and task analysis. A
submarine automation mcxlel provides an

illustration.

2. Multiple Dimensional Reference
Model Architecture

The NIST RCS is a reference model
architecture. Research results [9, 10, 11]

have demonstrated that the concept of
reference model architecture is extremely

useful since it provides a unified

approach and common execution

behavior across classes of problems. The
RCS architecture prescribes a canonical

form based on a generic intelligent

machine system model (see section

2.1.1). This facilitates the architecture’s

openness and scalability. RCS is rich

because it applies multiple but integrated

representation paradigms to model the

A Multiple Dimension Reference Model
Architecture for Intelligent Systems

The term hierarchy can mean different

things to different people. In an object

oriented paradigm, a hierarchy can mean
a tree describing class derivation. In a

functional decomposition paradigm, a

hierarchy can mean layers of
subfunctions representing a system.

Booch [5] describes these two
perspectives. In previous research

efforts, NIST ISD has successfully

explored the task, or level of authority,

based hierarchy (see section 2.2) and a

functional view ofRCS (see section

2.1.1). NIST ISD has also been
developing generic software templates

and libraries that can be inherited by new
RCS applications. Efforts are required to

integrate all these aspects together to form
an integrated view. This is a major issue

that we intend to address in this paper.

Our result is shown in Figure 1, which

2

describes that the three paradigms of:

level of authority, functional

decomposition, and inheritance form a

multiple dimensional reference model
architecture. These features characterize

RCS. At the origin of the coordinate

system is a generic controller node,

which serves as the building block of
RCS and is described by an intelligent

machine model. Sections 2.1 through

2.3 describe these aspects. Section 2.4

describes how an implementation

architecture is identified within the

reference model architecture. Booch [5]

describes two perspectives of a system:

algorithmic decomposition and object-

oriented decomposition, with the latter

being the driving perspective. These
perspectives correspond to the functional

decomposition and inheritance

perspectives of the reference model
architecture that this paper describes. The
most significant difference in our concept

is that the level of authority perspective

drives the system design while

referencing the generic reference model.

2.1.1 An intelligent machine
model

In Figure 2, the origin shows that a node
permits interaction from an operator. At
the second unit, a node is represented by
sensory processing (SP), world modeling
(WM), behavior generation (BG), and
value judgment (VJ) functions, as

described below:

The sensory processing (SP) function

samples sensory data, filters and
integrates sensory information over space

and time, recognizes patterns, and detects

events.

The world model (WM) function

conceptually models the state space of the

system, including maintaining the

laiowledge base for a node in real-time.

In this paper, the terms knowledge base,

state space, and world model are used
interchangeably. WM also estimates and
predicts world states for the planning and
sensory processing purposes. See
section 2.1.2 for more detail.

subfunctions subfunctions

Figure 2: Functional Decomposition of a Controller Node

2.1 The functional decomposition
dimension-an intelligent machine
model

As described earlier, a generic controller

node resides at the origin of the

coordinate system and is functionally

described by an intelligent machine model
[8]. The functional decomposition notion

means that a node is decomposed into

finer and finer functions extending farther

along this axis.

The behavior generation (BG) function is

responsible for planning and executing

the tasks that a node receives from its

superior node at the higher authoritative

level (see section 2.2). The output tasks

are sent to its subordinate nodes at the

lower level as input commands.

The value judgment (VJ) module
determines the costs during the planning

stage (see the Planner below).

3

The third unit along the axis describes

that the above node major functions can

be decomposed into subfunctions. BG
contains the following subfunctions:

The planner (PL). Planning typically

requires the evaluation of alternative

hypothetical sequences of planned

subtasks. The planner hypothesizes

some action or series of actions. WM
predicts the results of the action(s). VJ
computes the costs of the action(s).

The executor (EX). EX executes the

plans prepared by the planner by servoing

the state variables and computing output

commands for the next level nodes.

The job assignment manager (JA). JA
partitions the output commands generated

by EX and sends them to the lower level

nodes.

The fourth unit along the axis yields

another layer of functional

decomposition. For example, particular

path planners or search algorithms may
be included in a PL.

A node is subject to operator interaction

(OI). An operator may send commands
to the BG or request data for

display.

For detailed descriptions of the node
functions, see [8, 10].

2.1.2 The state space

The following information is a typical set

of knowledge maintained by WMs in a

distributed fashion, but available system-

wide.

Node state space:

* The plan information: the set of plans
that a node is capable of performing, the

name of the plan that is being executed,

and the current state of execution.

* The node status: typical status values

are Reset, Executing, Done, Waiting,

Error, and Emergency stop.

* The error code: typical errors arc

mismatch of command or stams between
senders and receivers, correspondent

nodes not responding, time out, etc.

* The performance indices: Timing
performance is typically the most critical

index. A node can maintain the following

timing information: last cycle execution

time, maximal execution time, minimal
execution time, averaged execution time

(moving average), and execution time

trend data.

* The data to be shared by other nodes:

object position, fuel level, etc.

Control system state space:

The integration of each individual node
state space constitutes the control system
state space. The controller hierarchy and
task structure serve as the references for

the organization of the node state space

information. The submarine automation
model illustrates this concept in section 3.

2.2 The level Of authority
dimension-hierarchical levels

RCS is a hierarchical architecture.

Controller nodes are distributed and are

authoritatively connected across the levels

along this axis. Sections 2.4 and 3.4

provide an example.

2.2.1 Levels of authority

In RCS, the following levels are

predefined as the guidelines for

partitioning a hierarchical system:

Level 6 -- Problem Domain Level, also

called Facility or Mission level. This is

the highest level. The controller receives

overall commands, from the user, for the

entire control system. The BG function of

this node decomposes these commands
and outputs the results to the responsible

next level controllers.

Level 5 -- Group Level. Multiple groups
of equipment (see level 4) may exist and
they must be coordinated at this level.

For example, a manufacturing production

4

line may have multiple workstations. A
workstation may have multiple pieces of

equipment. The group level, therefore,

contains these workstation controllers.

Level 4 — Equipment, or Task Level. A
node at this level typically models a major
physical entity, for example, a

submarine. Tasks received by the

controllers at this level concern how each

piece of equipment is expected to perform
to accomplish a system goal.

Level 3 — Elementary Move (E-move)
Level. The e-move level is the kinematic

control level. Any task is decomposed
into a series of subtasks that are free of
kinematic limits, singularities, and
obstacles. Sensor data submitted from the

primitive level (see the next paragraph)

may be combined to produce surface

signals from each individual sensor and
to process them.

2.2.2 Tenets of this dimension

Flexibility of the number of nodes
at the levels: Each level can have none
or multiple nodes except for the highest

level where there is one node. Some
problems may require only on-off types

of control and may not require a dynamic
(prim) level. On the other hand, some
problems may need multiple sublevels

within a predefined level. This may
happen when the tasks are complex
enough to warrant another level of

decomposition between a pair of

predefined parent and child levels. It may
also happen when the physical

environment contains mititiple layers of

natural boundaries between a pair of

predefined parent and child levels. For

generic specific

Figure 3: The Inheritance Dimension

features, feature distance and relative

orientation, etc.

Level 2 - Primitive (Prim) Level. The
primitive level is the dynamic control

level. The kinematically sound tasks are

computed for sub tasks that are

dynamically smooth. The SP function

integrates and fuses data gathered from
individual sensors and produces linear

features for objects.

Level 1 — Actuator Level. The controller

nodes at this level interact with the

environment. The BG generates

electrical, hydraulic, or mechanical

commands to activate the actuators. The
SP function for this level is to receive

example, a manufacturing facility may
have multiple production lines. A
production line may have multiple

workstations. A workstation may have
multiple pieces of equipment There are

two sub levels within the group level.

Canonical form: The controller nodes

repeat and extend themselves in the

context of the intelligent machine model
to a level sufficiently high to describe a

system. A unified execution behavior

exhibits across all the controller nodes at

all the levels.

5

Execution of system goals via task

decomposition: The behavior

generation (BG) function of the node(s)

at each level receives the commands from
the level above, decomposes them, and
outputs the results to the responsible next

level controllers. In other words,

controllers at a particular level coordinate

the execution of the next lower level

controllers.

Figure 4: Identifying an Architectural

Implementation

Resolution, temporal span, and
spatial span: High levels deal with
tasks and data that have less detail but

longer time and wider spatial span.

Lower levels deal with tasks and data that

have more detail but shorter time and
narrower spatial span.

2.3 The inheritance dimension-
reference modei to appiication

The concept along this axis is that the

desired functionality of models at the left

of the axis is inherited by models at the

right, shown in Figure 3. Kramer et al.,

[12] introduced a similar concept called

multiple tiers of architectures. RCS,
being a reference model architecture,

implies that the properties of the

intelligent machine model, described in

section 2.1, is inherited by any class of
problems using the architecture, for

example, the dynamic control system

class or manufacturing control system
class. Any vehicle control RCS inherits

properties developed for the dynamic
control system RCS. This inheritance

relationship can extend to many layers.

Each layer can contribute commonly
useful software library sets. This fact

makes this architecture implementation

process efficient and makes the RCS
development environment rich.

2.4 identifying an architectural

implementation within the

reference model

An RCS architectural implementation, see

Figure 4, can be viewed as a hierarchy

tree rooted on a notch on the inheritance

axis and growing in parallel with the

authority axis. The tree leaves represent

controller nodes, which can be
decomposed along the functional axis.

3. RCS Methodology: A Task
Oriented Knowledge Engineering
Process

3. 1 The knowiedge evolution

process

Architectural implementation involves

understanding, sorting, assimilating, and
integrating domain knowledge and
systems, computing, and control

Imowledge using a systematic approach.

RCS prescribes a task oriented

knowledge engineering process, which is

highlighted in Figure 5 as a knowledge
refinement process. Note that, the

multiple dimensional reference model
architecture (section 2) does not become
involved until the middle stages of the

process. Knowledge for a problem
domain and knowl^ge in the computing,
systems, and control fields are, to a large

extent, unrelated in their raw forms,

shown as the two separate branches at the

upper half of the drawing. In the second
box of the left branch, the RCS
methodology calls for interactions with

domain experts to identify a subset of the

knowledge that is within the scope of

project requirements. This exercise is

important in the sense that it may result in

clarifications or modifications of project

requirements. Another step of

knowledge refinement process further

deduces the domain knowledge to a set of

6

inclusive written operational scenarios.

The developers perform a task analysis

based on the scenario descriptions.

Quintero [13] also describes these aspects

in detail.

In the submarine project, the NIST ISD
researchers collaborated with a retired

submarine commander. Based on the

pre-established goals of the simulated

problem domain knowledge

knowledge output from the domain
expert. ISD researchers did not impose
any stmctural constraints during his

description. The commander was
encouraged to use the submarine

terminology. The main role of the ISD
researchers at this stage of interaction was
to be goal driven, to be intelligent

listeners, and to ask stimulating questions

sparsely to catalyze his stories.

computing,
systems and
control knowledge

Figure 5: A Knowledge Evolution Process

submarine, he described to us, in detail

and in every aspect, how a submarine

would operate to achieve the specified

goals. The following are some of the

methods used to maximize the relevant

At the right branch of Figure 5, a separate

knowledge refinement process occurs.

Note, we have not yet fuUy explored how
the task oriented method is applied to this

7

particular area. Appropriate computer
platforms (for both development and
operations), modeling and
implementation languages, operating

systems, CASE tools, MEL and other

standards or

specifications, etc., are

to be selected for use

with project

implementation.

Section 3.4 continues

the description of this

knowledge evolution

process.

3.2 An illustrative

scenario for the
submarine
automation model

A set of scenarios was
developed for this

project. The following

concise description

provides a flavor of
one scenario within the set:

Watch (EOOW) reports to the OOD that

he is prepared to answer bells on the

EPM. TTie OOD orders "Ahead two
thirds" which maintains enough speed for

depth and steering control.

Figure 6: An Analysis and Implementation Software Structure

A submarine is conducting a submerged
transit of the open ocean at its standard

speed (15 knots or nautical miles/hour,

equivalent to 7.7 meters/second) and at a

keel depth of 200 meters. A
watchstander reports that there is a lube

oil fire in the lower level Engine Room.
The Officer of the Deck (OOD) directs the

Ballast Control Panel (BCP) operator to

pass the word on the general announcing
system. The OOD completes the

following actions for coming to periscope

depth: Clearing baffles, Checking for

sonar contacts and close contacts.

Slowing and changing depth, and Raising
the periscope.

The damage control party fights the fire in

the engine room. On indication of

decreasing main lube oil pressure the

OOD orders "All stop, shift propulsion to

the EPM (emergency propulsion motor)."

The shaft rotation is stopped and the

clutch is used to disengage the shaft from
the turbines and the EPM circuit breaker

is closed. The Engineering Officer of the

The damage control party reports that the

fire is out. The BCP selects the

ventilation lineup and sets it to emergency
ventilate the engine room using the ^esel
engine. When the lineup is proper, the

OOD directs "Commence snorkeling."

3.3 A proposed analysis and
implementation structure

In our methodology, a generic and
comprehensive logical structure is

proposed to facilitate the analysis and
implementation of this multiple dimension
R(jS reference model architecture. This
logic structure is considered a software

technology specific to RCS and,

therefore, belongs to the lower portion of
Figure 5. This structure identifies and
integrates the following five areas (see

Figure 6):

* Control hierarchy. An
architectural implementation, described in

section 2.4, produces a control hierarchy

to perform real-time system control to

accomplish missions. Figure 9 is an

8

illustration of this hierarchy. The lowest actuator simulators, receive control

level nodes send electrical, hydraulic, or signals and compute for the mechanical
mechanical control signals to either movements of each individual actuator.

The higher level nodes integrate the

simulated actuator movements,
compute the ship level dynamics, and
obtain the ship movements. The
results are fed back to the above
control hierarchy via simulated

sensors. The dynamics of the

relevant environmental objects, for

example, sea water salinity and air

contamination in the submarine

engine room, is also simulated. See
section 4 for a detailed illustration.

* Animation hierarchy. This

hierarchy performs graphic rendering

only, at or close to, real-time, based

on the simulation results.

EOOWWATCH STATION
'SBAFT ^ ^ EPM ^

ftHERD mm AST
ENGRGE

DISEMGRGE

ASTERN

OPERATOR COMMAND:
I CHANGETO EPM

REPORTS:

Figure 7: A Graphic Operator Interface Panel

physical actuators or simulators (see

below).

* Simulation hierarchy. This

hierarchy is required to facilitate

conceptualizing and testing a control

hierarchy. The lowest level nodes, the

* Control operator interface. As
shown in Figure 2, nodes can be

interacted by operators. This

hierarchy is proposed for the interaction

purposes. This setup facilitates multiple

control modes: manual, autonomous,
and hybrid. It also allows emergency
control overrides from an operator.

Figure 7 is a graphic operator interface

Figure 8: Task Analysis Diagram

9

panel implemented for the submarine

automation model. An operator, called

Engineering Officer of the Watch
(EOOW), can switch the propulsion

•current

Legend
CC • command central

SM * ship maneuver
EC • engneefhg sjrdems
HLhelm
DP-depih
PR • propulsion

TB- lurta^

EM •emergecy motor

CL-dukdi
VT -ventialion

OS 'desel engine

SM prap. amafp. van(
EC •fmrg, vanf

LEGEhO:
Triggering Events dent

^^careprionty
eventventcati

SM: ^
msneuvefEC: Jobs

Commands

Figure 9: Illustrative Task Tree and Task Plans

control to Emergency Propulsion Motor
(EPM) under certain circumstances. See
section 3.2 for an operational scenario.

* Simulation operator interface.

This is a different kind of operator

interface. Simulated events, such as the

occurrence of a lube oil fire, are injected

via this hierarchy.

Current results indicate the five

hierarchies might exhibit one-to-one

correspondence to each other. Section 4
illustrates this effect.

3.4 Task analysis

After the operational scenarios

are obtain^, the two knowledge
areas merge, as shown in Figure

5. The developers perform task

analysis, based on the scenario

descriptions, to further formalize

the system knowledge. The
researchers first lay out the four

quadrants of a task analysis

diagram (Figure 8),

corresponding to the four

hierarchies described in Figure 6.

The researchers then identify the

control system tasks and
simulation system events

(described in detail later in this

section), which are essentially

the verbs in the scenario

descriptions. A formal modeling
representation, namely finite state

machine, is then used to describe

control system behaviors—the

sentences that the verbs are

associated with in the scenario

descriptions. The state diagrams

are then organized in the RCS
hierarchy, as illustrated in Figure

9. Finally, a C language

controller node software template

[14] is used to code the software.

These activities are shown in the

bottom two boxes in Figure 5.

The templates are a part of the

NIST ISD effort to explore the

inheritance dimension of the

multiple dimensional reference

model architecture (Figure 1).

Figure 8 illustrates this task analysis

activity. Refer to Figure 6 for the four

quadrants. Arrows show how we
identify and sequence a series of tasks,

nodes, and events. Note that a control

system is to be developed to replace the

manual operations described in the

scenario. On the upper left comer, a

fire_on event is identified per scenario.

During simulation, this event is to be
inject^ through a simulation operator

10

COMMAND

Figure 10: An Architectural Implementation

interaction node. Therefore, the

env_sim_OI node is identified. The
corresponding simulator node computes
the changes in the air constituents (see

smoke_contamination in figure) which
must be detected by a simulated sensor

installed in the vent controller. This

illustrates how developers realized that

the particular sensors and ventilation

controller are required. The fire report is

sent up the controller hierarchy to the

highest level controller which has the

responsibility of coordinating the

engineering system and maneuvering

controllers. From the scenario, one of

the commands Maneuver will receive is

prep_emerg_vent. A propulsion

controller is required to handle the switch

to the EPM control. In our control

system configuration, this particular

switching operation is to be done
manually. Therefore, a request is sent to

the controller operator interface hierarchy.

The operator reads the message (see

Figure 7), disengages the main shaft, and

reports when it is done. Many iterations

of these event, node, and task

identification activities are required to

finalize the multiple hierarchies.

Figure 10 shows the control hierarchy of

our submarine model in the context of the

multiple dimension reference model
architecture described in section 2.

Figure 9 proceeds another step further by
describing the behavior for each of the

identified tasks. Note that analytical

algorithms can be integrated into these

discrete event algorithms as processing

jobs.

4. Real-time Control, Simulation,

and Operator Interaction

As described earlier, our RCS
methodology provides a behavior

oriented analysis method that allows

describing the internal model of a system

to any sufficient level of detail. This

analysis produces a structure that is

described via an organization hierarchy, a

task tree, and behavior diagrams, as

described in section 3. Once the structure

is in place, the necessary supporting data,

algorithms, simulation, sensors, and
operator interface can be identified. The
same concept is extended to the

development of the simulation stmcture.

The result is a hierarchical simulator.

Such a process facilitates sensory data

analysis for RCS controller units. It also

enables incremental testing of the control

hierarchy.

The depth control and simulation for the

submarine is described here as an

illustration.

11

In Figure 1 1, a mission command given

to the commander includes the depth

requirements. They must be converted to

the electrical signals for the sail and stem
planes. Intermediate levels are needed to

provide smooth transitions between these

two extremes. The intermediate levels

facilitate human understanding,

computation efficiency, and control

stabUity. The command controller passes

the depth requirements of the mission.

through a series of way points, down the

hierarchy to the Maneuver controller.

Maneuver computes the required ship

depths accordingly and passes them
down for the Depth controller. Depth
computes a series of bubble angles

required for controlling the ship to the

specified depths. The Dive/Rise

controller computes required plane angle

maneuvers, for the Sail and Stem Plane

controllers, to achieve the required bubble

angles. The plane controllers generate

required electrical signals for the control

valves to move the planes to the

commanded angles.

The submarine depth simulator is

developed as a reverse of the control

hierarchy, as seen in the lower portion of
Figure 11. The only input that the

simulator receives from the controllers is

the commanded electrical

signals. The hydrodynamic
model for the submarine is

decomposed and distributed in

the simulator hierarchy. At the

lowest level (shown at the top of
the simulator), the

electrical signals are used to

compute for the simulated plane

angles, which are integrated at

the next level to form simulated

ship bubble angles. At the next

level, the dynamic model uses

the ship angles to compute the

ship depth. All these

interm^ate results may be used
as sensor input to feed back to

the appropriate controllers.

5. Conclusion and Future
Directions

A multiple dimension reference

model architecture has been
presented. Multiple dimensions
in the architecture facilitate the

descriptions of complex systems
from multiple perspectives. This
provides a framework for open
and scalable system architecture.

A knowledge engineering

methodology has been described

and illustrated. This process

describes systematic stmctures to

organize system knowledge and describes

a series of smooth transformations to

assimilate system knowledge from raw
forms to computer executable forms. A
submarine automation model is used to

illustrate the application of this RCS
reference model architecture and its

knowledge engineering methodology.
The simulation demonstrated the model

mission 1 rstatus for

operator

CONTROL
HIERARCHY

way point status

1 MANUEVER

1

ship depth

i

1
DEPTH

bubble angles

.multiple

level

sensory

data
feedback

loops

I
STERN PLANE

I SIMl^TION

plane angles

~ir
,

"""
' T —

SHIP DEPTH SIMULATION ^

SIMULATION
HIERARCHY

I SHIP SIMU^TION

fsensor simulation

Figure 11: Nested Depth Control and Simulation in

Submarine Automation

12

performing intelligent tasks by using the

well-structured operational knowledge.

Work has begun at NIST ISD and with

outside researchers to automate this

process. A Joint Architecture project has

been ongoing to describe, in detail, a

generic architecture for discrete parts

manufacturing facilities. A specification

for a RCS computer-aided control system
development (CACSD) tool is being

investigated. The achievement of such a

tool would greatly enhance the inheritance

aspect of the architecture. Software

templates have been generated to speed
up implementations. The ultimate goal is

an automated environment facilitating the

development of intelligent systems
covering from the very early

conceptualization stages to the final

criticd mission real-time operation stages.

6. Acknowledgments

Dr. James Albus and Dr. Anthony
Barbera have been leading the research

and application of RCS since they

originated it at NIST two decades ago.

Captain Robert Lowell and Dr. Ed
Carapezza ofARPA have been the

sponsors of the submarine project at

various stages and provided valuable

technical insights to the problem. Keith

Young was our principal submarine

domain expert. Richard Quintero, Ron
Hira, Ross Tabachow, and Will

Shackleford of NIST and M. L.

Fitzgerald, Nat Frampton, PhUip
Feldman, and Clyde Findley of the

Advanced Technology Corporation have

participated in various stages of the

submarine project.

7. References

1 Antsaklis, P.J., Lemmon, M., Stiver, J.A.,

Hybrid System Modeling and Event
Identification, Technical Report of the

ISIS Group, ISIS-93-(X)2, University of

Notre Dame, Notre Dame, IN, 1993.

2 Sweet, W., et al.. Recommendations from

the AIA/SEI Workshop on Research

Advances Required for Real-Time
Software Systems in the 1990s, Special

Report SEI-89-SR-18, Cargenie-Mellon
University Software Engineering

Institute, Pittsburgh, PA, September,

1989.

3 Strassmann, P.A., “The Use of the Ada
Computer Language: The DoD
Context,” Cross Talk, the Monthly
Technical Report of the United States

Air Force Software Technology Support
Center, HiU AFB, Utah, Febmary, 1992.

4 Simmons, R., et al., "Autonomous Task
Control for Mobile Robots,"

Proceedings of the Fifth International

Symposium on Intelligent Control,

Philadelphia, PA, September, 1990.

5 Booch, G., Object-Oriented Analysis and
Design with Applications, 2nd Edition,

The Benjamin/Cumming Publishing

Company, Inc., Redwood City,

California, 1994.

6 Coad, P. and Yourdon, E., Object
Oriented Analysis, Yourdon Press

Computing Series, Prentince HaU, Inc.,

Englewood Cliffs, New Jersey, 1991.

7 Schneider, S. A, et al., “ControlShell: A
Real-Time Software Framework,” AIAA
Conference on Intelligent Robots in

Field, Factory, Service, and Space,

March, 1994.

8 Albus, J.S., “Outline for a Theory of

Intelligence,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 21,

No. 3, May/June 1991

9 Albus, J.S., McCain, H.G., and Lumia, R.,

"NASA/NBS Standard Reference Model
for Telerobot Control System
Architecture (NASREM)," NBS
Technical Note 1235, National Bureau

of Standards, U. S. Department of

Commerce, April, 1989.

10 Huang, H., Quintero, R., and Albus, J.S.,

"A Reference Model, Design Approach,

and Development Illustration toward

Hierarchical Real-Time System Control

for Coal Mining Operations," Book
Chapter in Control and Dynamic
Systems, Advances in Theory and

Applications, Volume 46 Academic
Press, 1991.

’

13

1 1 Szabo, S., Scott, H.A., Murphy, K.N.,

Legowik, S.A., Bostelman, R.V., "High-

Level Mobility Controller for a

Remotely Operated Unmarmed Land
Vehicle," Journal of Intelligent and
Robotic Systems, 5: 63-77, 1992

12 Kramer, T. R., et al., “A Reference
Architecture for Control of Mechanical
Systems;” in proceedings 1994 Tutorial

and Workshop on Systems Engineering

of Computer-Based Systems; Harold W.
Lawson, editor, IEEE Computer Society

Press; 1994; pp. 104 - 110.

13 Quintero, R. and Barbera, A.J., A Real-

Time Control System Methodology for

Developing Intelligent Control Systems,
NISTIR 4936, 1992

14 Huang, H., Hira, R., Quintero, Q., and
Barbera A., "Applying the NIST Real-

time Control System Reference Model to

Submarine Automation: a Maneuvering
System Demonstration," NISTIR 5126,
1993.

14

r

}

i

